Quantitative modeling of a polyatomic molecule-metal surface reaction

Nattino1, J. Meyer1 and G.J. Kroes1

1.Leiden Institute of Chemistry, Leiden University, Gorlaeus Laboratories, PO Box 9502, 2300 RA Leiden, NL

Reactions at the gas-solid interface are ubiquitous and exploited, for instance, in heterogeneous catalysis [1]. Despite the relevance of the field, an accurate theoretical description and a thorough understanding of even the simplest molecule-metal surface reactions are generally still lacking. We report calculations on the dissociation of methane on metal surfaces [2-4]. This reaction does not only represent a model system for the rate-liming step of the steam reforming process, but it is also of fundamental interest, as the reactivity of this system depends highly on how energy is distributed over the molecular degrees of freedom [5,6]. We show that ab initio molecular dynamics (AIMD) calculations in combination with a semi-empirical density functional return a chemically accurate description of the experimentally measured sticking probability of partially deuterated methane CHD3) on Ni(111). The analysis of our calculations allows us to obtain insight into the reaction mechanism and to validate the use of dynamical  approximations employed in recent high-dimensional quantum dynamics studies [7-9]. Through the AIMD method we can also include surface atom motion into our model. This allows us to simulate surface temperature effects and to perform a detailed (mode-decomposed) analysis of phonon excitations in order to elucidate their role for energy dissipation.

[1] G.A. Somorjai and Y. Li, Proc. Natl. Acad. Sci. U. S. A. 108, 917 (2011)

[2] F. Nattino, H. Ueta, H. Chadwick, M. E. van Reijzen, R. D. Beck, B. Jackson, M. C. van Hemert, and G. J. Kroes, J. Phys. Chem. Lett. 5, 1294 (2014)

[3] F. Nattino, D. Migliorini, M. Bonfanti, and G. J. Kroes, J. Chem. Phys. 144, 044702 (2016)

[4] F. Nattino, D. Migliorini, G. J. Kroes, E. Dombrowski, E. A. High, D. R. Killelea, and A. L. Utz, J. Phys. Chem. Lett. 7, 2402 (2016)

[5] R. R. Smith and D. R. Killelea and D. F. DelSesto and A. L. Utz, Science 304, 992 (2004)

[6] D. R. Killelea and V. L. Campbell and N. S. Shuman and A. L. Utz, Science 319, 790 (2008)

[7] V. L. Campbell, N. Chen, H. Guo, B. Jackson, and A. L. Utz, J. Phys. Chem. A 119, 12434 (2015)

[8] X. J. Shen, J. Chen, Z. J. Zhang, K. J. Shao, and D. H. Zhang, J. Chem. Phys. 143, 144701 (2015)

[9] B. Jiang, M. H. Yang, D. Q. Xie, and H. Guo, Chem. Soc. Rev., DOI:10.1039/C5CS00360A (2016)